23 research outputs found

    Influence of binder attributes on binder effectiveness in a continuous twin screw wet granulation process via wet and dry binder addition

    No full text
    The effect of a wide variety of binders on the quality of granules produced via continuous twin screw wet granulation was studied. Anhydrous dicalcium phosphate was used as poorly soluble filler and was granulated applying dry or wet addition of binders. Furthermore, dry and wet binder characteristics were determined and linked to the binder effectiveness. PVA 4–88 and starch octenyl succinate exhibited the lowest granule friability at low liquid-to-solid ratios, i.e. the highest binder effectiveness, which was attributed to fast binder activation based on the fast wetting kinetics of the binder, to efficient wetting of DCP particles, and to good spreading in the powder bed. The performance of wettability measurements in an early formulation development stage is therefore considered highly important. Additionally, an increased stickiness of the binder surface caused by high binder viscosity and slow dissolution kinetics also positively influenced the binder effectiveness. In conclusion, this study revealed which binder attributes have a critical impact on the granulation process of dicalcium phosphate. Additionally, dry binder addition proved successful for creation of high quality granules

    Continuous twin screw granulation : robustness of lactose/MCC-based formulations

    Get PDF
    In recent years, significant progress has been made in the field of continuous twin screw granulation. However, only limited knowledge is currently available on the impact of active pharmaceutical ingredient (API) properties on granule quality and processability. In this study, the response behavior of four formulations containing APIs (5–10% drug load) with diverse characteristics was compared to the behavior of the corresponding placebo formulation consisting of lactose, microcrystalline cellulose (MCC) and hydroxypropylmethylcellulose (HPMC). API selection was based on extensive material characterization, combining conventional testing with in silico descriptors. For each formulation, a design of experiments was set up, evaluating the impact of liquid to solid (L/S) ratio and screw speed. Response ranges, response behavior and processability of each of the four formulations proved very similar to the placebo formulation when an appropriate center point L/S ratio was chosen. Hence, this robust placebo formulation could prove useful by decreasing drug product development time and consequently providing patients with a faster access to innovative medicine. Additionally, APIs with similar properties exhibited highly comparable response behavior at similar L/S ratios, indicating the potential use of surrogate APIs in novel drug product development

    Identifying critical binder attributes to facilitate binder selection for efficient formulation development in a continuous twin screw wet granulation process

    Get PDF
    The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation

    LICC: L-BLP25 in patients with colorectal carcinoma after curative resection of hepatic metastases--a randomized, placebo-controlled, multicenter, multinational, double-blinded phase II trial

    Get PDF
    Background: 15-20% of all patients initially diagnosed with colorectal cancer develop metastatic disease and surgical resection remains the only potentially curative treatment available. Current 5-year survival following R0-resection of liver metastases is 28-39%, but recurrence eventually occurs in up to 70%. To date, adjuvant chemotherapy has not improved clinical outcomes significantly. The primary objective of the ongoing LICC trial (L-BLP25 In Colorectal Cancer) is to determine whether L-BLP25, an active cancer immunotherapy, extends recurrence-free survival (RFS) time over placebo in colorectal cancer patients following R0/R1 resection of hepatic metastases. L-BLP25 targets MUC1 glycoprotein, which is highly expressed in hepatic metastases from colorectal cancer. In a phase IIB trial, L-BLP25 has shown acceptable tolerability and a trend towards longer survival in patients with stage IIIB locoregional NSCLC. Methods: This is a multinational, phase II, multicenter, randomized, double-blind, placebo-controlled trial with a sample size of 159 patients from 20 centers in 3 countries. Patients with stage IV colorectal adenocarcinoma limited to liver metastases are included. Following curative-intent complete resection of the primary tumor and of all synchronous/metachronous metastases, eligible patients are randomized 2:1 to receive either L-BLP25 or placebo. Those allocated to L-BLP25 receive a single dose of 300 mg/m2 cyclophosphamide (CP) 3 days before first L-BLP25 dose, then primary treatment with s.c. L-BLP25 930 mug once weekly for 8 weeks, followed by s.c. L-BLP25 930 mug maintenance doses at 6-week (years 1&2) and 12-week (year 3) intervals unless recurrence occurs. In the control arm, CP is replaced by saline solution and L-BLP25 by placebo. Primary endpoint is the comparison of recurrence-free survival (RFS) time between groups. Secondary endpoints are overall survival (OS) time, safety, tolerability, RFS/OS in MUC-1 positive cancers. Exploratory immune response analyses are planned. The primary endpoint will be assessed in Q3 2016. Follow-up will end Q3 2017. Interim analyses are not planned. Discussion: The design and implementation of such a vaccination study in colorectal cancer is feasible. The study will provide recurrence-free and overall survival rates of groups in an unbiased fashion. Trial Registration EudraCT Number 2011-000218-2

    Continuous twin screw granulation : a review of recent progress and opportunities in formulation and equipment design

    No full text
    Continuous twin screw wet granulation is one of the key continuous manufacturing technologies that have gained significant interest in the pharmaceutical industry as well as in academia over the last ten years. Given its considerable advantages compared to wet granulation techniques operated in batch mode such as high shear granulation and fluid bed granulation, several equipment manufacturers have designed their own manufacturing setup. This has led to a steep increase in the research output in this field. However, most studies still focused on a single (often placebo) formulation, hence making it difficult to assess the general validity of the obtained results. Therefore, current review provides an overview of recent progress in the field of continuous twin screw wet granulation, with special focus on the importance of the formulation aspect and raw material properties. It gives practical guidance for novel and more experienced users of this technique and highlights some of the unmet needs that require further research

    Continuous twin screw granulation : impact of binder addition method and surfactants on granulation of a high-dosed, poorly soluble API

    No full text
    Despite the recent commercialization of several drug products manufactured through continuous manufacturing techniques, knowledge on the formulation aspect of these techniques, such as twin screw wet granulation, is still rather limited. Previous research identified lactose/MCC/HPMC as a robust platform formulation for several model formulations, although granulation of the high-dosed, poorly soluble API mebendazole proved challenging. Therefore, current research evaluated the binder addition method (wet or dry) as well as surfactant (SLS) addition when using PVP, instead of HPMC. Compared to the previous formulation, using HPMC as binder, all four formulations with PVP yielded significantly stronger granules at similar to significantly lower liquid to solid (L/S) ratios. Through the combination of four replicate center composite circumscribed designs, each evaluating the impact of screw speed and L/S ratio on granule quality attributes, the effect of the formulation variables was assessed. Overall, L/S ratio had the most significant impact on granule characteristics whereas the effect of screw speed was negligible. Similar granule quality attributes were obtained for each formulation, although the addition of SLS and wet binder addition significantly reduced the required L/S ratio to achieve the desired characteristics. This significant reduction could prove useful for processing other formulations requiring high amounts of moisture, which could otherwise not be dried at a high throughput due to the limited drying capacity of the dryer unit of the Consigma system

    Native starch as in situ binder for continuous twin screw wet granulation

    No full text
    The use of native starch as in situ binder in a continuous twin screw wet granulation process was studied. Gelatinization of pea starch occurred in the barrel of the granulator using a poorly soluble excipient (anhydrous dicalcium phosphate), but the degree of gelatinization depended on the liquid-to-solid ratio, the granule heating and the screw configuration. Furthermore, the degree of starch gelatinization was correlated with the granule quality: higher binder efficiency was observed in runs where starch was more gelatinized. SEM and PLOM images showed experimental runs which resulted in completely gelatinized starch. Other starch types (maize, potato and wheat starch) could also be gelatinized when processed above a critical barrel temperature for gelatinization. This barrel temperature was different for all starches. In situ starch gelatinization was also investigated in combination with a highly soluble excipient (mannitol). The lower granule friability observed using pure mannitol compared to a mannitol/starch mixture indicated that starch did not contribute to the binding, hence starch did not gelatinize during processing. The study showed that native starch can be considered as a promising in situ binder for continuous twin screw wet granulation of a poorly soluble formulation

    The effect of binder types on the breakage and drying behavior of granules in a semi-continuous fluid bed dryer after twin screw wet granulation

    No full text
    Current study investigated the effect of different binder types on the granule drying process and the granule breakage behavior in a semi-continuous fluid bed dryer integrated in the C25 ConsiGma-system. The studied binders (i.e. hydroxypropyl pea starch, hydroxypropyl methylcellulose E15, polyvinylpyrrolidone K12, and starch octenyl succinate CO 01) required different liquid amounts to produce similar granule quality. These different liquid requirements were translated into different drying conditions for each binder to result in suffi-ciently dry granules at the end of a drying cycle. By comparing the size distribution of the granules before entering and after exiting the fluid bed dryer, granule breakage could be evaluated. No effect of the binder type on the granule breakage during drying was observed. However, differences in granule breakage were observed for the binders when processed with the horizontal set-up of the C25 system, as granule breakage during pneumatic transport depended on the binder type. Only one binder (hydroxypropyl pea starch) allowed to avoid granule breakage during the entire process. Furthermore, this research showed that the drying process was mainly steered by the liquid requirements for granulation, and that these liquid requirements depended on the binder used
    corecore